radically in their preferred conformations and it has been suggested that this fact may have a bearing upon their more active enantiomers (of formally alike asymmetry) differing in configuration. ${ }^{9}$ Conformational differences between methadols and their acetates are also likely to be of importance in this context and a study of this nature is presently in hand.

Experimental Section ${ }^{10}$

α (\pm)-Methadol, $\mathrm{mp} 100-102^{\circ}$ (lit. ${ }^{11} \mathrm{mp} 100-101^{\circ}$), was obtained from (\pm)-methadone and LAH; $\alpha-(+)$-methadol hydrochloride, $\mathrm{mp} 187-188^{\circ},[\alpha]^{20_{\mathrm{D}}}+33.5^{\circ}\left(c 0.2, \mathrm{H}_{2} \mathrm{O}\right)$ [lit. ${ }^{12}$ $\left.\mathrm{mp} 169-171^{\circ},[\alpha]^{25} \mathrm{D}+34^{\circ}\left(c 0.26, \mathrm{H}_{2} \mathrm{O}\right)\right]$, was obtained from (-)-methadone and $\mathrm{Na}-\mathrm{PrOH}^{1}$ (LAH gave racemic material).

6-Dimethylamino-4,4-diphenylhexan-3-ol (Normethadol).Normethadone (26.7 g) was reduced with LAH (1.7 g) in the usual way ${ }^{1}$ to give the amino alcohol (21 g), $\mathrm{mp} 100-101^{\circ}$, from EtOH. It formed a hydrochloride, mp $140-142^{\circ}$, from $\mathrm{Me}_{2} \mathrm{Co}-$ $\mathrm{Et}_{2} \mathrm{O}$. Anal. ($\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{ClNO}$) C, H, N. Methiodide, mp 183-185 ${ }^{\circ}$, from EtOH-Et ${ }_{2} \mathrm{O}$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{INO}\right) \mathrm{C}, \mathrm{H}$, N. Bitartrate [using (\pm)-tartaric acid], mp 146-148 ${ }^{\circ}$, from EtOH. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Normethadol (14.85 g) and (+)-tartaric acid (7.5 g) were dissolved in hot 96% EtOH (30 ml) and the solution was stored at room temperature. The solid which separated was crystallized twice from the same solvent to give $(+)$-normethadol (+)tartrate (7.8 g) $\mathrm{mp} 144-146^{\circ},[\alpha]^{27} \mathrm{D}+20^{\circ}\left(c 2, \mathrm{H}_{2} \mathrm{O}\right)$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Acetoxy-6-dimethylamino-4,4-diphenylhexane Hydrochlo-ride.-A mixture of (\pm)-normethadol (3.5 g), EtOAc (80 ml), and $\mathrm{AcCl}(3 \mathrm{ml})$ was heated under reflux for 2 hr and then cooled. The solid which separated was recrystallized from EtOH$\mathrm{Et}_{2} \mathrm{O}$ to give (\pm)normethadyl acetate hydrochloride, mp $104-106^{\circ}$, as a monohydrate ($\nu_{\max } 3350 \mathrm{~cm}^{-1}$). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{30^{-}}\right.$ $\left.\mathrm{ClNO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Acetylation of $(+)$-normethadol gave the (+)-acetoxy ester hydrochloride, mp $163-165^{\circ}$, from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O},[\alpha]^{26} \mathrm{D}+22.5^{\circ}$ (c 2, $\mathrm{H}_{2} \mathrm{O}$). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClNO}_{2}\right) \mathrm{C}, \mathrm{H}$.

[^0]
7-Oxabicyclo[2.2.1]heptane-2,3-dicarboximides with Anticonvulsant Activity

Earl R. Bockstahler, Lawrence C. Weaver, and Donald L. Wright

Human Health Research and Development Laboratories, The Dow Chemical Company, Zionsville, Indiana $460 \hat{7}$

Received October 9, 1967
During an exploratory study of various derivatives of 7 -oxabicyclo[2.2.1]heptane, we encountered marked anticonvulsant activity in the N-phenethyl-2,3-dicarboximide ($\mathrm{I}, \mathrm{R}=$ phenethyl), a compound which may

be regarded as an elaborately substituted succinimide. Since its acute toxicity was relatively low, we undertook a study of the manner in which activity might be altered by variation of the R group.

Grogan and Rice ${ }^{1}$ have described a number of imides of this sort. Some pharmacological testing was done, but revealed little significant activity. Beyond their work, only scattered examples of derivatives of this oxygen-bridged ring appear in the literature; it has been little used in the synthesis of potential drugs.

We prepared a series of imides (Table I) by heating primary amines with exo,cis-7-oxabicyclo[2.2.1]hep-tane-2,3-dicarboxylic acid or its anhydride, essentially according to published procedures. ${ }^{\text {1a }}$ The products were considered to be exo, in conformity with the starting material. This assignment was confirmed by nmr examination in a number of instances; in no case was splitting of the signal for the protons at positions 2 and 3 of the cyclohexane ring by the protons at 1 and 4 observed ($J<0.5 \mathrm{cps}$).

Unexpectedly, two products, 46 and 47, were obtained from 6 -chloro-o-toluidine. Upon nmr examination, these were identified as rotationally isomeric forms of the expected imide, each containing $3-4 \%$ of the other rotamer. The signal for the protons at positions 2 and 3 was normally a single sharp line near $\delta 3.0$. In the spectrum of $\mathbf{4 6}$, it appeared as a pair of lines, a major one at 3.07 accompanied by a very small one at 3.02. For 47 , a similar but reversed pair appeared, the major line being at 3.05 , the minor one at 3.09 .

Confirmatory evidence of restricted rotation about the N-phenyl bond and consequent rotational isomerism among the phenylimides in general was afforded by the appearance of pairs of lines for the H-2,3 signal for those having only one ortho substituent, and for the protons of o-methyl groups, equal in size for the 2,6 -xylylimide, unequal for o-tolylimides. Also, a small shift was seen between the two aromatic protons of the 2,4,6-trihalophenylimides, and in some cases two groups of lines could be seen for the protons at positions 1 and 4.

In pharmacological testing of the imides (Table II), considerable anticonvulsant activity was observed. Some of them showed potency in animal tests comparable to that of drugs currently used in therapy, Activity was essentially limited to compounds in which R was aryl or aralkyl with a one or two-carbon link between aryl group and imide N . Alkyl and heterocyclic imides had only feeble activity, if any.

Of the simple aralkyl derivatives, phenethyl (4) and benzyl (3b) were moderately active against both electroshock and pentylenetetrazole convulsions. β Methylphenethyl (8) showed good activity in the electroshock test, but insertion of an α-methyl group (6,7) almost completely destroyed activity. Substitution on the phenyl ring tended to reduce potency.

The phenylimide (3a) was only feebly active. However, its monochloro derivatives were more active, and introduction of a second Cl or of an $0-\mathrm{CH}_{3}$ substituent led to the most potent compounds of the series. The 2,3-dichlorophenylimide ($\mathbf{2 5}$) showed the greatest overall activity. It was rivalled in potency against electroshock seizures by the 2,4- and 3,5-dichlorophenyl-, 3 -chloro-o-tolyl-, and 2-chloro-5-trifluoromethylphenylimides (26, 30, 48, 52) and against pentylenetetrazole seizures by the 2,5-dichlorophenyl- and 4-chloro-0-tolyl-

[^1]Tomite 1

Compas	12	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Yielr.	Formula*	Cumpel	13	$\mathrm{M}_{14}{ }^{\circ} \mathrm{C}$	Yield. $\%$	Formula ${ }^{\text {e }}$
1	$t-\mathrm{C}_{4} \mathrm{H}_{8}$	160-170	4.8	$\mathrm{C}_{12} \mathrm{H}_{1} \mathrm{NO}_{31}$: ${ }^{4}$	$4-\mathrm{BrO}_{6} \mathrm{IH}_{1}$	$206-208$	5\%	$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{Br}^{2} \mathrm{NO}_{3}$
2	Gycluliexyl	107-109	40	$\left.\mathrm{C}_{14} \mathrm{HH}_{19} \mathrm{NO}\right)_{1}$	3:		210-211	22	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{Br}_{3} \mathrm{NO}_{4}{ }^{\text {a }}$
:	$\mathrm{CH}_{3} \mathrm{CHOHICI}{ }_{2}$	117-118	7:	$\mathrm{C}_{11} \mathrm{H}_{4} \mathrm{NO}_{4}$	$: \%$	$2-\mathrm{FOC} \mathrm{C}_{4} \mathrm{IH}_{4}$	25-2-9,	45	$\mathrm{C}_{44} \mathrm{H}_{13} \mathrm{~N}()_{4}$
4	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}$	110-111"	8	$\mathrm{C}_{16} \mathrm{HI}_{17} \mathrm{NO}_{1}$: 2 -	$4-\mathrm{IfOC}_{6} \mathrm{LH}_{4}$	214-21\%	31	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}()_{4}$
-	$\mathrm{C}_{6} \mathrm{II}_{5}\left(\mathrm{CH}_{2}\right)_{4}$	$\begin{aligned} & 99.5- \\ & 100.5 \end{aligned}$	74	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}{ }^{\prime \prime}$: 3	$2-\mathrm{ClH} \mathrm{O}^{\left(\mathrm{OC}_{6} \mathrm{H}_{4}\right.}$	$\begin{array}{r} 149.5- \\ 100.5 \end{array}$	76	$\left.\mathrm{C}_{1} \mathrm{H}_{15} \mathrm{NO}\right)_{4}$
('	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$	$86-87$	(6),	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}^{-} \mathrm{O}_{3}$	$3!$	$2-\mathrm{C}_{2} \mathrm{H}_{51} \mathrm{O} \mathrm{CO}_{6} \mathrm{ll}_{4}$	129-130	71	$\left.\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}\right)_{4}$
7	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$	(6) $) 71$	4.	$\mathrm{C}_{1} \mathrm{H}_{1}, \mathrm{NO}_{3}$	40	$4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \mathrm{Cl}_{6} \mathrm{ll}_{4}$	17:3-174	86	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{1}$
S	$\mathrm{C}_{6} \mathrm{HI}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}$	S1-83	72	$\mathrm{C}_{17} \mathrm{H}_{1} \mathrm{~S}^{\text {NO}} \mathrm{NO}_{4}$	41	: $-\mathrm{CFF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	106-198	71	$\mathrm{C}_{45} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO} \mathrm{O}_{3}$
!	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right) \mathrm{CH}_{2}$	(12) 0	$\because 2$	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$	42	$\therefore \mathrm{O} \mathrm{CH}_{4} \mathrm{CO} \mathrm{C}_{6} \mathrm{HI}_{4}$	183-184	41	$\mathrm{C}_{16} \mathrm{HI}_{15} \mathrm{NO}_{4}$
10	$\left(\mathrm{C}_{6} \mathrm{HI}_{5}\right)_{2} \mathrm{CH}$	137-1:9	68	$\mathrm{C}_{21} \mathrm{IF}_{19} \mathrm{~N}()_{4}$	4:	$4-\left(\mathrm{CII}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{II}_{4}$	209-211	77	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$
11	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHCH}_{2}$	170-171	(i.)	$\mathrm{C}_{4} \mathrm{II}_{41} \mathrm{NO}_{3}$	44	$2-\mathrm{Cl}-4-\mathrm{Cl}_{4} \mathrm{C}_{6} \mathrm{Il}_{3}$	154-150	S	$\mathrm{C}_{15} \mathrm{II}_{11} \mathrm{ClNO}_{3}$
12	$\mathrm{C}_{6} \mathrm{IH}_{5} \mathrm{CH}=\mathrm{CHCH}_{2}$	100-10\%	? 2	$\mathrm{C}_{1} \mathrm{II}_{1}: \mathrm{N}()_{1}$	47		$17: 3174$	78	$\mathrm{C}_{15} \mathrm{II}_{44}(1 \mathrm{NO})_{3}$
1:1	$\mathrm{C}_{6} \mathrm{IH}_{5} \mathrm{OClH}_{2} \mathrm{Cl}_{2}$	-6.77	$3!$	$\mathrm{Cl}_{16} \mathrm{II}_{17} \mathrm{NO}_{4}$		2 - $\mathrm{CH-Cllar}$			
14	$\mathrm{C}_{6} \mathrm{IH}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)$	140-141	π	$\left(C_{1 ;} \mathrm{II}_{1 ;} \mathrm{N}_{2} \mathrm{O}_{2}\right.$	41		$21: 3020$	17	($1_{5} \mathrm{H}_{4} \mathrm{ClNO}_{4}$
15	$2-\mathrm{CH}_{5} \mathrm{C}_{6} 1 \mathrm{H}_{1}$	166-167	7 i	($\left.\mathrm{i}_{2} \mathrm{Il}_{1: 2} \mathrm{NO}\right)_{4}$	47	$\beta-\mathrm{forch}$	$216-218$	7	$\mathrm{Ci}_{5} \mathrm{HI}_{14} \mathrm{ClNO}_{4}$
16	${ }_{3}-\mathrm{ClH}_{3} \mathrm{C}_{6} 1 \mathrm{H}_{4}$	16t-161	38	$\left.\mathrm{C}_{15} \mathrm{II}_{15} \mathrm{NO}\right)_{2}$	45	$8-\mathrm{C}-2-\mathrm{ClO}_{3} \mathrm{CaH1}_{3}$	15.7-156	si	$\left.\mathrm{C}_{15} \mathrm{I}_{14} \mathrm{ClNO}\right)_{1}$
17	$4-\mathrm{CII}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	182.	(i)	$\left.\mathrm{C}_{1}: \mathrm{II}_{1} \mathrm{NO}\right)_{3}$	44		$20: 3-204$	70	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO} \mathrm{O}_{3}$
		183.:			-11	$4-\mathrm{Cl}-2-\mathrm{ClH}_{3} \mathrm{C}_{6} \mathrm{H}_{1}$	17?-174	(64	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO} \mathrm{O}_{3}$
IN	$2-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	12:) 12\%	41	$\mathrm{Ca}_{66} \mathrm{H}_{17} \mathrm{NO}_{3}$	\square	$\therefore-\mathrm{Cl}-2-\mathrm{Cl} \mathrm{I}_{3} \mathrm{C}_{6} \mathrm{I}_{6}$	175-176	83	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Cl} \mathrm{CO}_{3}$
1!1	2,4-($\left.\mathrm{CH}_{4}\right)_{2} \mathrm{C}_{6} \mathrm{II}_{3}$	180.5.	-i	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}_{1}$	52	$2-\mathrm{Cl}_{-3} \mathrm{COF}_{3} \mathrm{C}_{4} \mathrm{II}_{3}$	1:3-189	80	$\mathrm{C}_{14} \mathrm{IH}_{11} \mathrm{ClF}_{3} \mathrm{NO}_{2}$
		1×1.5			i.)	$2-\mathrm{ClC}_{4} \mathrm{H}_{4} \mathrm{CH}_{2}$	122 12:3	64	$\mathrm{C}_{15} \mathrm{HI}_{14} \mathrm{ClNO}_{3}$
20	$2, \mathrm{O}-\left(\mathrm{ClH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	186-18s	(6)	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO} \mathrm{O}_{3}$	it	4- $\mathrm{ClCram}_{4} \mathrm{Cl}$	110.8	(i2	$\left.\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO}\right)_{3}$
21	$\therefore \mathrm{B}, 4-\left(\mathrm{CHI}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{IH}_{3}$	169-170	7	$\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{NO}_{3}$			111.5		
2'2	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	16:3-164	79	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{3}$	π	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{I}_{4} \mathrm{Cll}$	144-14.;	24	$\left(1: 11_{15} \mathrm{Cl}_{1} \mathrm{~N} \mathrm{O}_{1}\right.$
23	$3-\mathrm{ClC}_{6} \mathrm{II}_{4}$	103)-154	71	$\mathrm{C}_{14} \mathrm{IH}_{12} \mathrm{CINO}_{3}$	36	$3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{ll}_{5} \mathrm{ClI}_{2}$	129123	92	$\mathrm{C}_{1,} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~F} \mathrm{O}_{2}$
24	$4-\mathrm{ClC}_{6} \mathrm{II}_{4}$	194-195	00	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{3}$	07	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{IH}_{4} \mathrm{CH}_{2}$	109-110	73	$\mathrm{O}_{16} \mathrm{II}_{1} \mathrm{NO}_{4}$
25	$\left.2,3-\mathrm{Cl}_{2} \mathrm{C}_{6}\right] \mathrm{I}_{3}$	160-161	58	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	-5	$4-\mathrm{C}_{2} \mathrm{IH}_{5} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	118119	75	$\mathrm{O}_{1} \mathrm{HI}_{19} \mathrm{VO}_{4}$
26	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H} \cdot \mathrm{I}_{1}$	151-152	96	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$:!	$4-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	SS-89	73)	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4}$
27	$2,5-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H} \mathrm{I}_{3}$	179)-1.00	83	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	60	$2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}$	S2-S;	31	$\mathrm{C}_{66} \mathrm{HI}_{16} \mathrm{ClNO}_{3}$
$2 \times$	$2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{1}$	189-190	77	$\mathrm{C}_{14} \mathrm{HH}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{0}$	G1	$4-\mathrm{ClC}_{4} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}$	143-145	7.6	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNO}_{11}$
29	:3,4-Cl ${ }_{2} \mathrm{C}_{6} \mathrm{HI}_{3}$	197-198	83	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{5}$	62	$2,4-\mathrm{Cl}_{4} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{ClH}_{2}$	$124-126$	40	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{4}$
30	$3,5-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	1.74-1.5)	58	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	(i3)	:-Pridy	160-161	4.5	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$
31	$2,4, \bar{i}-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	183-184	64	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{3} \sim^{\prime} \mathrm{O}_{3}$	(i)	i-Cl-2-pyridyd	168-170	85	$\mathrm{Clilin}_{11} \mathrm{ClN}_{2} \mathrm{O}_{2}$
\% 2	$2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	198-199	63	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{NO}_{3}$	(i.)	-Thiazoly	185-180	22	$\mathrm{Cl}_{11} \mathrm{IH}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
:3i	$2-\mathrm{BrC}_{6} \mathrm{II}_{4}$	159-160	36	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrNO} \mathrm{O}_{3}$	(i)	- Benzathiazaly	$252-254$	18	$\mathrm{C}_{16} \mathrm{II}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}^{\text {d }}$

 calcd, 60.01; found, 60.51. e All compounds were analyzed for C, II.
imides (27, 50). Further substitution led to sharply decreased activity.

Many of the imides were also subjected to the amphetamine aggregation test. Three (15, 48, 50), all ortho substituted, gave complete protection at $200-400$ $\mathrm{mg} / \mathrm{kg}$, but unfortunately none showed appreciable activity at lower doses.

A limited number of compounds were also tested for analgetic and antiemetic activity. Analgetic activity was apparent in a few, but their potency was not sufficient to justify further exploration. None showed antiemetic activity at the doses investigated.

Compounds listed in Table I but not in Table II showed little or no activity at the highest dose tested, usu: ally 400 or $800 \mathrm{mg} / \mathrm{kg}$.

Experimental Section ${ }^{2}$

N -(6-Chloro-o-tolyI)-7-oxabicyclo[2.2.1]heptane-2,3-dicarboximides $(46,47)$.-A mixture of 84 g of 6 -chloro- 0 -toluidine and 111 g of exo,cis-7-oxabicyclo[2.2.1|heptane-2,3-dicarboxylic acid was heated gradually to $240-250^{\circ}$ and held at this temperature for 2 hr, then cooled and recrystallized from EtOH. A first crop, largely prisms, formed at room temperature. The mother liquor
was chilled and deposited a second crop, largely needles. The iwn crops were recrystallized separately from MeOH to constant melting ppint, yielding 27 g of prisms, $\mathrm{mp} 213-215^{\circ}$ (α-form, 46), arid 14 g of needles, $\operatorname{mp} 216-218^{\circ}$ (β-form, 47). Nmr data are ns follows: 20, $\delta 2.10,2.07\left(3: 3, \mathrm{CH}_{3}\right) ; 44,3.04,2.96(1.2: 0.8$, $\mathrm{H}-2,3) ; 46,3.07,3.02(1.9: 0.06, \mathrm{H}-2,3), 2.15,2.11$ (1.9:0.06, $\left.\mathrm{CH}_{3}\right) ; 47,3.07,3.09(1.9: 0.08, \mathrm{H}-2,3), 2.12,2.15\left(1.9: 0.08, \mathrm{CH}_{3}\right)$; $50 ; 2.99,2.94(0.7: 1.3, \mathrm{H}-2,3), 4.93,4.89$ ($0.7: 1.3, \mathrm{H}-1,4$), $2.07,2.10\left(0.7: 1.2, \mathrm{CH}_{3}\right) ;$ mixtmre of 46 and $47(2: 1), 3.07,3.03$ (1.3:0.7, I-2.3), 4.18, $\overline{3} .02(1.3: 0.7, \mathrm{I}-1,4), 2.1: 3,2.09$ (1.3:0.7, CIT_{3}). Other peaks were as expectecl.

Pharmacological Methods.-Tests were performed in male albino Swiss-Webster mice which were allowed free access tw, food and water except during the testing period. Adult mongrel dogs unselected as to sex were used in the antiemetic studies. The compounds were administered as aqueous solutions on as fine suspensions in cellulose guns. Determinations of $E D_{i n}$ or LD:s and 95% confidence limits were made statistically. ${ }^{3}$ When

[^2]Table II

Pharmacological Restlis"

Compd	LDin, mg/kg	$\mathrm{TD}_{\text {b0, }} \mathrm{ngg} / \mathrm{kg}$	Met ${ }^{\text {b }}$	Anticonvulsant EDia, ing/kg	SL ${ }^{\text {d }}$	$\underset{\mathrm{hr}}{\mathrm{PAT}^{c}}$	$\begin{gathered} \mathrm{dAA}^{\prime} \\ \% \\ \text { protection } \end{gathered}$
				Mes ${ }^{\circ}$			
$3 \mathrm{a}^{\circ}$	1165	510	$>400^{\text {a }}$	400	>400	1	0
		(436-597)		(370-432)			
$3 \mathrm{~b}^{\text {i }}$	$1240^{\prime \prime}$	330	285^{3}	171	>400	2	0
		(297-413)	(197-413)	(143-205)			
4	>1600	600	168^{k}	154	>400	1	0
		(546-660)	(150-188)	(132-170)			
6	>1600	<800	>400	340	>400	3	0
				(272-425)			
8	>1600	<800	>200	132	>200	3	
				(88-198)			
12	>1600	<800	>400	220	>400	3	63
				(105-462)			
15	$270 \mathrm{ip}^{4}$		>800	260	>400	2	100
				(220-307)			
20	>1000	~ 500	>400	310	>400	3	0
				(227-356)			
22	1690	750	185^{2}	112	>240	1	38
		(581-958)	(170-202)	(101-124)			
23	>1200	1200	280	260	>400	2	38
		(500-2880)	(230-342)	(216-315)			
24	1450		> 800	240	>400	5	13
				(191-306)			
25	>1600	565	52	27	>200	1	
		(479-667)	(26-104)	(18-30)			
26	1000	415	195 m	43.5	>400	3	0
		(319-540)	(160-238)	(30-62)			
27	>1600	<800	94	<200	>400	3	100
			(73-149)				
28	>1000		>400	280	>400	5	0
				(226-327)			
30	>800	<800	250	49	>200	3	50
			(227-295)	(20-118)			
32	> 800		>400	175	>400	5	0
				(154-200)			
33	>1600	<800	315	<400	>400	3	40
			(258-348)				
38	595 ip		> 800	505	>400	2	
				(481-530)			
39	$410 \mathrm{ip}^{n}$	700	$>800^{n}$	296	>400	1	59
		(468-756)		$(248-355)$			
41	>1600	<800	>400	335	>400	3	71
				(211-533)			
42	>1600	>1600	>400	290	>400	1	39
				(234-360)			
48	<1600	<800	200	24.5	>200	1	100
			(141-284)	(17-36)			
50	>1000	280	90	105	>200	3	100
		(222-353)	$(69-117)$	(88-126)			
52	<400		>200	50	>200	5	67
				(40-63)			
53	1350 ip		>400	225	>400	3	60
				(188-269)			
54	600 ip		870	251	>400	3	67
			(725-1044)	(198-319)			
56	>2000	520	>400	165	>400	3	50
		(260-1050)		(131-208)			
60	>1600	<800	125	98	>200	1	0
			(106-148)	(78-113)			

[^3]inticated, tests werc performed at timen of peak melivity an determined daring toxicity studies.

Determinations were made of 24 -hir (oxicitics, msing gioups of fen mice ab each dose level, of anticomvilsanc anctivity against electroshock and pentylenetetrazole, ${ }^{4}$ and of abilisy io proteal against suychume lethality and amphetamine aggregaton lothality, ${ }^{6}$ the dose nsed in the latter test heing the same as that in the strychnine test in nearly all cases. Representative com-

Acknowledgment. - We are indebted to Dr: J. I. Heeschen, of the Chemical Physics Laboratory, The Dow Chemical Co., for determination and interpretation of nmr spectra.
(4) E. A. Swinyarl. IV. C. Brown, and L. S. Geohman, I. Pharmacul. Erphl. Therap.. 116, 314 (1952).
(s) L. C. Weaver, W. R. Jones, and 'T. I, Lertey, Awh. Intern. I'turmato$d y / n, 143,119$ (1963).
(G) I.. C. Weaver and T. L. Ledry. J. Thatmacol, Expth. Therap., $\mathbf{1 3 5}$, 210 (1962).
 298 (19G0).
(8) R. W. Begles. W. R. Jones, and L. (\therefore Weaver, Jrch. /aters. I'harmen codyn. 129, 236 (1960).

Hypotensive Quaternary Ammonium Salts with a Guaiacol or Thymol Residue

M. Colisbimi, A. (itioneo, l'. D'Ambrosio, É. (iflinelli, 1i. Milla, asd F. Rivenni

Bessarth Labonatories of Muggioni and Co., S.p.A., 20133 Milan, Italy

Received November 1r, 196i
In a previous paper ${ }^{-1}$ we described a series of basic ethers of guaiacol and thymol with a polyoxyethylenic chain (I), some of which showed considerable antitussive activity; in addition, in almost all of the compounds of that series, we recorded hypotensive properties of short duration, probably originating in a direet aetion on the myocardium or the peripheral vasodilation. Quaternary ammonium salts often show a pronounced activity on neuromuscular or ganglionic transmission, which accounts for their properties of lowering blood pressure; this prompted us to transform the basic ethers previously described into quaternary ammonium salts (II), in order to see if the hypotensive aetivity of the former was enhanced.

The deseription of the new compounds, listed in Trable I, and their phamacological evaluation are the subject of the present note.

Experimental Section

Where analyses are indicated only by symbols of the elements analytical rewalts , ohtained for inse elements were within to 0.4^{1}. of the theoretical values.

1'1401; 1

$$
\mathrm{R}\left(\mathrm{OCH}_{2} \mathrm{Cl}_{2}\right)_{,} \mathrm{N}^{\prime} \mathrm{R}^{\prime} \mathrm{C}_{2} \mathrm{H}_{3} \cdot \mathrm{I}
$$

No.	12	1	NR':	Furinula	Webred	lould.
1	(:	$\stackrel{1}{2}$	Nr(\%115)	$\left(\mathrm{Si}_{1} \mathrm{ll}_{30} \mathrm{INO}_{3}\right.$	1	
\because	''	2	$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	$\mathrm{C}_{20} \mathrm{Hosfol}^{\text {NO}}$	1	23
:	G	3	N(\% H_{6})	(', $\mathrm{H}_{34} \mathrm{NNO}_{4}$	13	Ti
1	T	3	Ni $\left(1 H_{5}\right)=$	$\left(\mathrm{C}_{2} \mathrm{H}_{40} \mathrm{INO}\right)_{3}$, 1	der
i	(:	\ddagger	V($\left.{ }^{2} 21_{6}\right)^{\prime}$	$\mathrm{C}_{21} 11_{38} \mathrm{INO} \mathrm{O}_{5}$	13	87
1	T	1	Nif($\left.\because 11_{5}\right)=$	$\left({ }_{4} \mathrm{H}_{44} \mathrm{NNO}_{4}\right.$	13	(\%)
7	(:	i	S($\left(2 H_{6}\right)$,	(${ }_{23} \mathrm{H}_{42} \mathrm{INO}_{6}$	13	-8
8	T	;		(${ }_{6} \mathrm{H}_{48} \mathrm{NNO}_{5}$	13	T3
4	(:	is	N(Call ${ }_{\text {c }}$	$\left({ }_{56} \mathrm{H}_{46} \mathrm{INO}\right)_{7}$	13	81
10	' 1	©	Ni(${ }^{\left(1 H_{5}\right)}$)	$\mathrm{C}_{28} \mathrm{ll}_{52} \mathrm{INO} \mathrm{N}_{6}$	13	811
11	(:	7	N($\left.\mathrm{C}_{1} \mathrm{H}_{5}\right)^{\prime}$	$\mathrm{C}_{9} \mathrm{Il}_{80} \mathrm{NNO}_{8}$	13	ii
12	'1	7	$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$		13	89
$1: 3$	G	\because	I'peridino	$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{INO}$	13	81
14	T	-	Piperidino	$\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{INO}_{2}$	13	111
15	(3	Piperidina	$\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{INO}_{4}{ }^{\text {f }}$	13	(1i)
16	'1	3	Piperidino	$\mathrm{C}_{3} \mathrm{H}_{40} \mathrm{INO}_{3}$	13	92
17	(i)	4	Piperidino	$\mathrm{C}_{22} \mathrm{H}_{38} 1 \mathrm{NO}_{5}$	13	41
18	' 1	1	l'iperidino	$\left({ }^{4}{ }_{55} \mathrm{H}_{44} \mathrm{NNO} \mathrm{O}_{4}\right.$	13	8!
10	(i)	;	l'peridino	$\bigcirc{ }^{2}{ }_{4} \mathrm{H}_{42} \mathrm{INO}_{6}$	13	:13
9	T	$\bar{\square}$	Piperidino	$\mathrm{C}_{2} \mathrm{H}_{48} \mathrm{INO}_{6}$	13	10)
21	(;	;	l'iperidinu	$\bigcirc_{26} \mathrm{H}_{46} \mathrm{INO}$;	13	[1]
9	T'	;	Piperidins	$\left({ }_{26} \mathrm{H}_{62} \mathrm{HN} \mathrm{O}_{6}{ }^{4}\right.$	13	\%
93	($\underline{\square}$	Angreholinu	$\mathrm{C}^{7} \mathrm{HH}_{28} \mathrm{INO}_{4}$	13	io
21	${ }^{1}$	2	Norpholine,	(20 $\mathrm{H}_{34} \mathrm{INO}^{\text {h }}$	13	3:
25	(i)	;	Morpholias	$\left({ }_{19} \mathrm{H}_{32} \mathrm{INO}_{6}\right.$	13	80
26	'1	3	Murpholine	$\mathrm{C}_{2} \mathrm{H}_{38} 1 \mathrm{NO}_{4}$	13	$7:$
27	G	1	Morpholino	$\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{INO}_{6}$	13	87
28	T	1	Norpholino	${ }^{(24}{ }_{24} \mathrm{H}_{42} \mathrm{INO}_{6}$	13	7
29	($\underline{1}$	Pyroblidino	$\mathrm{CiH}_{28} \mathrm{HNO}_{3}$	13	! 10
30	' 1	$\stackrel{ }{9}$	l'yrrolidino	$\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{INO} \mathrm{O}_{2}$	13	45
31	(i)	3	P'yrrolidiuo	$\mathrm{CigH3}_{32} \mathrm{INO}_{4}$	13	72
$3 \cdot$	'T	3	Pyrrolidine	$\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{INO}_{3}$	13	87
:3	(+	l'yrosidinu	$\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N} \mathrm{O}_{5}$	13	9
31	'r	1	l'yrrolidina	$\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{TNO}_{4}$	13	80
35	(:	\because	1-Methylyijerazine	$\left({ }_{20} \mathrm{H}_{36} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{C}\right)$	1	98
36	'1'	\because	f. Methylpiferazine	$\left({ }_{23} \mathrm{H}_{42} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{\text {' }}\right.$	1	81.
37	(;	\because	1- Methyluiperazino	$\left({ }_{22} \mathrm{H}_{40} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$	($\mathrm{ijF}^{\text {a }}$
38	' 1	:	1-Menbylniperazino	$\left({ }_{45} \mathrm{H}_{46} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$	1	Hid
3 3	(;	1	- Methylniperazind,	$\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{k}$	1	86
11	1	(1-Mechylpiperazino	$\mathrm{C}_{27} \mathrm{H}_{60} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	$1 \cdot$	$6 ;$

Nelting points were determined in a capillary tuloc and are not corrected. ${ }^{3} \mathrm{Mp} 94^{\circ}$ from i-PrOFI. * Mp 109° from $i-\operatorname{PrOH}$. Ei.O. "Mp 66-6 8° (washed many times with ether). 1 : calced, 18.95; found, 18.46 . I : caled, 26.47 ; found, 25.94. " I: caled, 19.90; found, 20.37. ${ }^{h}$ I: caled, 27.38; found, 26.s). 'Mp 163° from i-PrOH. ; I : calcd, 40.12 ; found, 40. 65 . k I: calcd, 36.5n; frand, 37.17. : All compounds were allalyged for I, N.

Methods A and B.--'lle amine was dissolved with cooling in the same volume of EtI and, after standing 24 hr in the dark at room temperature, (lry ether was added to the solution. Somctimes a solid precipitated (method A). This was filtered, washed with ether, and recrystallized. In most cases, however, an oil scparated (method B) which was repeatedly slurried with ether and dissolved in 10 vol of acetone. After filtering with charcoal the solution was cvaporated, yielding the quaternary salt as a clear water-soluble oil, which was dried at $60^{\circ}(1 \mathrm{~mm})$.

Method C.-The amine (5 mmoles), 5 ml of EtI, and 50 ml , l^{\prime} dry MeOH were refluxed for 16 hr , after whieh time the solntion was evaporated to dryness. The oily residue was slurried repeatedly with dry ether and dissolved in 20 ml of a saturated solution of $\mathrm{NaH}\left(\mathrm{O}_{3}\right.$. This solution was extracted five times with $5 \mathrm{ml}\left(\mathrm{CHCl}_{3}\right)$ and evaporated at $35^{\circ}(13 \mathrm{~mm})$ to give a semisolid residue, from which the mineral salts were eliminated by extracting ing with $20-\mathrm{ml}$ portions of hot $i-\mathrm{PrOH}$ and filtering from insoluhh, material. After evaporation of the solvent the oily quaternary salt was cheeked for the prosence of mineral residue and extracted with i-Pr()FI mutil it was pure.

[^0]: (9) A. F. Casy and M. M. A. Hassan. J. Pharm. Pharmacol. 19, 114 (1967).
 (10) Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4 \%$ of the theoretical values.
 (11) E. L. May and E. Mosettig. J. Org. Chem., 13, 459 (1948).
 (12) A. Pohland. F. J. Marsliall, and T. P. Craney, J. Am. Chem. Soc. 71, 460 (1949).

[^1]: (1) (a) C. H. Grogan and L. M. Rice, J. Med. Chem., 6, 802 (1963); (b) L. M. Rice, C. H. Grogan, and E. E. Reid, J. Am. Chem. Soc., 75, 4911 (1953); (c) ibid., 77, 616 (1955).

[^2]: (2) Melting points were determined in a Thomas-Hoover Unimelt apparatus and are uneurrected. Elemental analyses were performed by Clark Mictoanalytical Laboratory, Urbana, Ill., and Midwest Microlab, Indianapolis, Ind.; wbere analyses are indicated only by symbols of the elements. analytical results obtained for those elements were within $\pm 0.4 \%$ of the theoretical values. Nmr spectra were obtained on a Varian A-60 spectrometer in $5-20 \%$ concentration in CDCl_{8}, using TMS as an internal reference.
 (3) J. T. Litehfield, Jr,, alld F. Wilcoxorl, J. Pharmacol. Ixptl. Therap., 96, 99 (1949).

[^3]: ${ }^{a}$ Oral administration unless otherwise indicated. ${ }^{b}$ Pentylenetetrazole threshold seizure pattern test. ${ }^{c}$ Maximal electroshock seizure pattern test. d Strychnine lethality test. ${ }^{\circ}$ Peak activity time. ${ }^{f} d$-Amphetamine aggregation test. $\circ \mathrm{R}=\mathrm{phenyl}\lfloor\mathrm{N} . \mathrm{N}$. Mel'nikov and V. A. Kraft, J. Gen. Chem. USSR, 26, 227 (1956); Chem. Abstr., 50, 13812 (1956)]. ${ }^{h}$ Administered in Carbowax. ${ }^{i} \mathrm{R}=$ benzyl [J. Jolivet, Ann. Chim. (Paris), 5, 116á (1960)]. ${ }^{i}$ Maximal pentylenetetrazole seizure pattern test (MMS): ED ${ }_{50}=$ $51(38-68) \mathrm{mg} / \mathrm{kg} . \quad k$ MMS: $\mathrm{ED}_{50}=36(23-56) \mathrm{mg} / \mathrm{kg} . \quad{ }^{l} \mathrm{MMS}: \mathrm{ED}_{50}=19(15-24) \mathrm{mg} / \mathrm{kg} . \quad m$ MMS: ED $50=7.6(6-9) \mathrm{mg} / \mathrm{kg}$. ${ }^{n}$ MMS: $\mathrm{ED}_{50}=200(143-280) \mathrm{mg} / \mathrm{kg}$.

